Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1900170 | Wave Motion | 2014 | 22 Pages |
Abstract
Scattering of monochromatic elastic waves on an isolated planar crack of arbitrary shape is considered. The 2D-integral equation for the crack opening vector is discretized by Gaussian approximating functions. For such functions, the elements of the matrix of the discretized problem have forms of standard one-dimensional integrals that can be tabulated. For regular grids of approximating nodes, the matrix of the discretized problem has the Toeplitz structure, and the corresponding matrix-vector products can be calculated by the fast Fourier transform technique. The latter strongly accelerates the process of iterative solution of the discretized problem. Examples of calculations of crack opening vectors, dynamic stress-intensity factors, and differential cross-sections of circular (penny-shaped) and non-circular cracks for various incident wave fields are presented. For a penny-shaped crack and longitudinal incident waves normal to the crack plane, an efficient semi-analytical method of the solution of the scattering problem is developed. The results of both methods are compared in a wide frequency region of the incident field.
Keywords
Related Topics
Physical Sciences and Engineering
Earth and Planetary Sciences
Geology
Authors
S. Kanaun,