Article ID Journal Published Year Pages File Type
1900523 Wave Motion 2014 16 Pages PDF
Abstract
The generalised Burgers' equation models the nonlinear evolution of acoustic disturbances subject to thermoviscous dissipation. When thermoviscous effects are small, asymptotic analysis predicts the development of a narrow shock region, which widens, leading eventually to a shock-free linear decay regime. The exact nature of the evolution differs subtly depending upon whether plane waves are considered, or cylindrical or spherical spreading waves. This paper focuses on the differences in asymptotic shock structure and validates the asymptotic predictions by comparison with numerical solutions. Precise expressions for the shock width and shock location are also obtained.
Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Geology
Authors
, ,