Article ID Journal Published Year Pages File Type
1907071 Experimental Gerontology 2006 12 Pages PDF
Abstract

The clk-1 gene of the nematode Caenorhabditis elegans encodes an evolutionarily conserved enzyme that is necessary for ubiquinone biosynthesis. Loss-of-function mutations in clk-1, as well as in its mouse orthologue mclk1, increase lifespan in both organisms. In nematodes, clk-1 extends lifespan by a mechanism that is distinct from the insulin signaling-like pathway but might have similarities to calorie restriction. The evolutionary conservation of the effect of clk-1/mclk1 on lifespan suggests that the gene affects a fundamental mechanism of aging. The clk-1/mclk1 system could allow for the understanding of this mechanism by combining genetic and molecular investigations in worms with studies in mice, where age-dependent disease processes relevant to human health can be modeled.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , ,