Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1924732 | Archives of Biochemistry and Biophysics | 2016 | 23 Pages |
Abstract
Nuclear factor-κB (NF-κB) may activate a series of gene transcription control cellular signaling pathways whose products are components in a wide range of biological processes. MicroRNAs, a group of non-coding endogenous ones, may regulate gene expression and plays specific roles in tumorigenesis. Using human cervical cancer cell lines, we explored whether NF-κB regulates the expression of microRNA-130a (miR-130a) through binding elements in the miR-130a promoter region. We found that miR-130a accelerates cervical cancer cell proliferation by targeting the phosphatase and tensin homolog on chromosome 10 (PTEN). Further, NF-κB activates both HeLa and CaSki cell growth by upregulating miR-130a. In addition, by targeting PTEN 3Ⲡuntranslated region, miR-130a might increase cell growth and initiate protein kinase B (AKT) pathway activation. Lastly, PTEN protein was upregulated in response to NF-κB overexpression and downregulated in response to NF-κB inhibition. Compared to total AKT protein level, p-AKT was downregulated by NF-κB overexpression while upregulated by NF-κB inhibition, indicating PTEN pathway activated and affected by NF-κB. Taken together, our findings shed new light on the NF-κB/miR-130a/PTEN pathway in cervical cancer and add new insight regarding the carcinogenesis of cervical cancer.
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Biochemistry
Authors
Yeqian Feng, Shenghua Zhou, Guiyuan Li, Chunhong Hu, Wen Zou, Haixia Zhang, Lili Sun,