Article ID Journal Published Year Pages File Type
1925007 Archives of Biochemistry and Biophysics 2015 7 Pages PDF
Abstract

•TGF-β activates Src in H358 cells largely through a non-canonical redox mechanism.•TGF-β induces a transient increase in extracellular H2O2 with a peak at 10 min.•Cysteine mutations in Src abrogate Src activation by TGF-β.

Transforming growth factor-β1 (TGF-β) is involved in multiple cellular processes through Src activation. In the canonical pathway, Src activation is initiated by pTyr530 dephosphorylation followed by a conformational change allowing Tyr419 auto-phosphorylation. A non-canonical pathway in which oxidation of cysteine allows bypassing of pTyr530 dephosphorylation has been reported. Here, we examined how TGF-β activates Src in H358 cells, a small cell lung carcinoma cell line. TGF-β increased Src Tyr419 phosphorylation, but surprisingly, Tyr530 phosphorylation was increased rather than decreased. Vanadate, a protein tyrosine phosphatase inhibitor, stimulated Src activation itself, but rather than inhibiting Src activation by TGF-β, activation by vanadate was additive with TGF-β showing that pTyr530 dephosphorylation was not required. Thus, the involvement of the non-canonical oxidative activation was suspected. TGF-β increased extracellular H2O2 transiently while GSH-ester and catalase abrogated Src activation by TGF-β. Apocynin, a NADPH oxidase inhibitor, inhibited TGF-β-stimulated H2O2 production. Furthermore, mutation of cysteines to alanine, 248C/A, 277C/A, or 501C/A abrogated, while 490C/A significantly reduced, TGF-β-mediated Src activation. Taken together, the results indicate that TGF-β-mediated Src activation operates largely through a redox dependent mechanism, resulting from enhanced H2O2 production through an NADPH oxidase and that cysteines 248, 277, 490, and 501 are critical for this activation.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,