Article ID Journal Published Year Pages File Type
1925860 Archives of Biochemistry and Biophysics 2011 7 Pages PDF
Abstract

Cyclooxygenase-2 (COX-2) plays important roles in the development of many disease conditions, including pancreatic β-cell dysfunction. Although the processes involved in the transcriptional regulation of COX-2 are well documented, some key elements, especially inhibitory elements, are still unknown. In our previous study, we identified a novel repressor element located in promoter region of mouse COX-2. In this study, we isolated several DNA-binding proteins from NIT-1 cells via DNA affinity chromatography; the most prominent among these proteins was poly (ADP-ribose) polymerase-1 (PARP-1). In this study, gel-supershift assays and chromatin immunoprecipitation assays showed that PARP-1 can bind to the inhibitory element −655/−632 in the promoter region of mouse COX-2 both in vitro and in vivo. Furthermore, overexpression of PARP-1 significantly inhibited promoter activity and decreased COX-2 expression. Conversely, repression of PARP-1 by RNAi upregulated COX-2 expression. These data suggest that PARP-1 plays an important role in the regulation of COX-2 expression via binding to the inhibitory element. Collectively, our findings provide new important information on the transcriptional regulation of COX-2 in pancreatic β-cells.

Research highlights► PARP-1 binds to COX-2 promoter region by interactions with the inhibitory element. ► PARP-1 has a negative effect on the COX-2 gene basal expression. ► This regulatory sequence is highly conserved between mouse and rat.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,