Article ID Journal Published Year Pages File Type
1925978 Archives of Biochemistry and Biophysics 2010 7 Pages PDF
Abstract

The production of a soluble actomyosin complex would be a significant step toward elucidating molecular interactions responsible for biological movement. We took a systematic approach to producing soluble long-pitch actin dimers that are polymerization-deficient yet retain biological protein–protein interactions, including myosin binding. Actin mutant proteins and chemical crosslinking were combined with different polymerization inhibition strategies, including ADP-ribosylation, or the use of a polymerization-deficient actin mutant protein. While all of the long-pitch actin dimers retained interactions reflective of F-actin activity, each displayed different interactions with myosin. Myosin did not interact productively with long-pitch actin dimers capped with DNase-I, and led to filament formation of unmodified long-pitch actin dimers or dimers possessing a polymerization-deficient actin subunit. However, ADP-ribosylated long-pitch actin dimers interacted with myosin, giving this dimer great potential for producing a soluble actomyosin complex, which could greatly improve our understanding of the molecular basis of movement in cells, tissues, and organisms.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,