Article ID Journal Published Year Pages File Type
1926025 Archives of Biochemistry and Biophysics 2010 7 Pages PDF
Abstract

Ascorbic acid improves endothelial barrier function by decreasing the permeability of endothelial cells cultured on semi-porous membrane filters. This decrease was not due to enhanced collagen synthesis and was mimicked by the collagen synthesis inhibitor ethyl-3,4-dihydroxybenzoic acid (EDHB). Since EDHB is known to chelate intracellular free iron, the effects of two membrane-permeant iron chelators were tested on endothelial permeability. Both 2,2′-dipyridyl and desferrioxamine decreased trans-endothelial permeability in a concentration-dependent manner. Increasing intracellular iron with a chelate of 8-hydroxyquinoline and ferric iron prevented effects of both EDHB and intracellular ascorbate. That EDHB and ascorbate did in fact chelate intracellular iron was supported by finding that they both decreased the cellular fluorescence quenching of the iron-sensitive dye Phen green SK. These results show that chelation of intracellular iron decreases endothelial barrier permeability and implicate this mechanism in the ability of EDHB and possibly intracellular ascorbate to tighten the endothelial barrier.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,