Article ID Journal Published Year Pages File Type
1926296 Archives of Biochemistry and Biophysics 2009 4 Pages PDF
Abstract

The active form of vitamin D, 1α,25-dihydroxyvitamin D3 (1,25(OH)2D3), can suppress disease in the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis. Calcium appears to be a critical component of 1,25(OH)2D3-mediated suppression of EAE, as complete disease prevention only occurs with a concomitant increase in serum calcium levels. Calcitonin (CT) is a peptide hormone released in response to acute increases in serum calcium, which led us to explore its importance in 1,25(OH)2D3-mediated suppression of EAE. Previously, we discovered that co-administration of pharmacological doses of CT enhanced the suppressive effect of 1,25(OH)2D3 on EAE, suggesting CT may play a role in 1,25(OH)2D3-mediated suppression of EAE. To determine the importance of CT in EAE we have utilized a mouse strain in which the gene encoding CT and its alternative splice product, calcitonin gene related peptide-α (CGRP), have been deleted. Deletion of the CT/CGRP gene had no effect on EAE progression. Furthermore, treatment with 1,25(OH)2D3 suppressed EAE in CT/CGRP knock-out mice equal to that in wild type mice. Therefore, we conclude that CT is not necessary for 1,25(OH)2D3-mediated suppression of EAE.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,