Article ID Journal Published Year Pages File Type
1926752 Archives of Biochemistry and Biophysics 2008 6 Pages PDF
Abstract

Glycyrrhetinic acid (GA) is a hydrolytic product of the triterpene glycoside of glycyrrhizic acid, one of the main constituents of licorice root, which has long been studied, due to its several biological and endocrine properties. In this paper, GA was tested on human erythrocytes, and GA-induced alterations were compared with those caused by diamide, a mild oxidant inducing well-characterized cell/membrane alterations, and n-ethylmaleimide (NEM), as alkylating agent. In order to verify the biochemical steps underlying the action of GA, band 3 Tyr-phosphorylation level, enzyme recruitment and band 3 clustering in cells pre-incubated with GA before diamide treatment were all examined. Results show that GA, in a dose-dependent manner, prevents both diamide and NEM-induced band 3 Tyr-phosphorylation, but not GSH decrease caused by both compounds. In addition, diamide-induced band 3 clustering and IgG binding to altered cells were also completely reversed by GA pre-treatment. Also, when membrane sensitivity toward proteolytic digestion was tested, GA-treated cells showed high resistance to proteolysis. In conclusion, in human erythrocytes, GA is proposed to strengthen membrane integrity against both oxidative and proteolytic damage.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,