Article ID Journal Published Year Pages File Type
1927204 Archives of Biochemistry and Biophysics 2007 11 Pages PDF
Abstract

Previous studies show that the reverse transcriptase (RT) of human immunodeficiency virus type-1 (HIV-1) and RT-derived peptides interact with and inhibit the viral integrase (IN). In the present study, we have performed the complementary study by screening a complete library of HIV-1 IN-derived peptides for their effects on the RT. We have identified a 20-residues long peptide, derived from the IN (residues 46–65) that binds the RT and inhibits its DNA-polymerase activities (without affecting the ribonuclease-H activity). The full 20-residues sequence is required for maximal inhibition. This inhibition is non-competitive and probably results from obstructing the formation of RT-DNA complexes by the peptide. The data and the molecular docking model presented suggest that this inhibition is probably caused by a steric hindrance or conformational changes of the RT. These results can facilitate the development of novel and specific peptide-based HIV-1 RT inhibitors that might help in the fight against AIDS.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,