Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1927402 | Archives of Biochemistry and Biophysics | 2006 | 8 Pages |
In the green alga Chlamydomonas reinhardtii, an L290F substitution in the chloroplast-encoded large-subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) causes decreases in carboxylation Vmax, CO2/O2 specificity, and thermal stability. Analysis of photosynthesis-competent revertants selected at the 35 °C restrictive temperature identified a rare C65S suppressor substitution in the nuclear-encoded small subunit. C65S enhances catalysis and CO2/O2 specificity in the absence of other wild-type small subunits, and restores thermal stability in vivo. C65S, C65A, and C65P mutant strains were created. C65S and C65A enzymes have normal catalysis, but C65P Rubisco, which contains land-plant Pro, has decreases in carboxylation Vmax/Km and CO2/O2 specificity. In contrast to other small-subunit substitutions that affect specificity, Cys-65 contacts the large subunit, and the C65P substitution does not cause a decrease in holoenzyme thermal stability in vivo or in vitro. Further analysis of the C65P protein may identify structural alterations that influence catalysis separate from those that affect stability.