Article ID Journal Published Year Pages File Type
1927614 Archives of Biochemistry and Biophysics 2006 10 Pages PDF
Abstract
Most protease prosegments are co-synthesized at the N-termini of cysteine proteases and are involved in folding assistance, inhibition, and activation of their mature enzymes. By using circular dichroism, UV-difference and fluorescence spectroscopies, we studied the thermal unfolding of papain prosegment. The transition seems to be two-state and reversible, with an unfolded state prone to aggregation. Unfolding thermodynamic parameters obtained show low values both for ΔHTm and ΔCpU, indicative of a loosely packed three-dimensional conformation for the prosegment at near-neutral pH conditions. In spite of these results, fluorescence experiments demonstrate that papain prosegment is able to recognize and inhibit its cognate protease. An acid medium induces a molten globule-like state without intermediates, which in turn undergoes an irreversible thermal unfolding. Our results suggest that papain prosegment has a high degree of conformational flexibility, with the ability to form not only a molten globule-like structure in activating conditions, but also requiring an induced fit in order to be functional as inhibitor.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,