Article ID Journal Published Year Pages File Type
1927618 Archives of Biochemistry and Biophysics 2006 11 Pages PDF
Abstract

Glycation or the Maillard reaction in proteins forms advanced glycation end products (AGEs) that contribute to age- and diabetes-associated changes in tissues. Dideoxyosones, which are formed by the long-range carbonyl shift of the Amadori product, are newly discovered intermediates in the process of AGE formation in proteins. They react with o-phenylenediamine (OPD) to produce quinoxalines. We developed a monoclonal antibody against 2-methylquinoxaline-6-carboxylate coupled to keyhole limpet hemocyanin. The antibody reacted strongly with ribose and fructose (+OPD)-modified RNase A and weakly with glucose and ascorbate (+OPD)-modified RNase A. Reaction with substituted quinoxalines indicated that this antibody favored the 2-methyl group on the quinoxaline ring. We used high performance liquid chromatography to isolate and purify three antibody-reactive products from a reaction mixture of Nα-hippuryl-l-lysine + ribose + OPD. The two most reactive products were identified as diastereoisomers of N1-benzoylglycyl-N6-(2-hydroxy-3-quinoxalin-2-ylpropyl)lysine and the other less reactive product as N1-benzoylglycyl-N6-[2-hydroxy-2-(3-methylquinoxalin-2-yl)ethyl]lysine. Our study confirms that dideoxyosone intermediates form during glycation and offers a new tool for the study of this important pathway in diabetes and aging.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,