Article ID Journal Published Year Pages File Type
1928537 Biochemical and Biophysical Research Communications 2014 7 Pages PDF
Abstract

•The perturbation sensitivity (PS) network of S. cerevisiae is constructed from transcriptional profiling.•The essential and non-essential genes are analyzed by 12 topological properties in the PS network.•The essentiality of each property is estimated by the F-score.

Genes that are indispensable for survival are called essential genes. In recent years, the analysis of essential genes has become extremely important for understanding the way a cell functions. With the advent of large-scale gene expression profiling technologies, it is now possible to profile transcriptional changes in the entire genome of Saccharomyces cerevisiae. Notwithstanding the accumulation of gene expression profiling in recent years, only a few studies have used these data to construct the network for S. cerevisiae. In this paper, based on the transcriptional profiling of the S. cerevisiae genome in hundreds of different gene disruptions, the perturbation sensitivity (PS) network is constructed. A scale-free topology with node degree following a power-law distribution is shown in the PS network. Twelve topological properties are used to investigate the characteristics of essential and non-essential genes in the PS network. Most of the properties are found to be statistically discriminative between essential and non-essential genes. In addition, the F-score is used to estimate the essentiality of each property, and the core number demonstrates the highest F-score among all properties.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,