Article ID Journal Published Year Pages File Type
1929688 Biochemical and Biophysical Research Communications 2012 7 Pages PDF
Abstract

Cyclic AMP is involved in the regulation of metabolism, gene expression, cellular growth and proliferation. Recently, the cAMP signaling system was found to modulate DNA-damaging agent-induced apoptosis by regulating the expression of Bcl-2 family proteins and inhibitors of apoptosis. Thus, we hypothesized that the cAMP signaling may modulate DNA repair activity, and we investigated the effects of the cAMP signaling system on γ-ray-induced DNA damage repair in lung cancer cells. Transient expression of a constitutively active mutant of stimulatory G protein (GαsQL) or treatment with forskolin, an adenylyl cyclase activator, augmented radiation-induced DNA damage and inhibited repair of the damage in H1299 lung cancer cells. Expression of GαsQL or treatment with forskolin or isoproterenol inhibited the radiation-induced expression of the XRCC1 protein, and exogenous expression of XRCC1 abolished the DNA repair-inhibiting effect of forskolin. Forskolin treatment promoted the ubiquitin and proteasome-dependent degradation of the XRCC1 protein, resulting in a significant decrease in the half-life of the protein after γ-ray irradiation. The effect of forskolin on XRCC1 expression was not inhibited by PKA inhibitor, but 8-pCPT-2′-O-Me-cAMP, an Epac-selective cAMP analog, increased ubiquitination of XRCC1 protein and decreased XRCC1 expression. Knockdown of Epac1 abolished the effect of 8-pCPT-2′-O-Me-cAMP and restored XRCC1 protein level following γ-ray irradiation. From these results, we conclude that the cAMP signaling system inhibits the repair of γ-ray-induced DNA damage by promoting the ubiquitin–proteasome dependent degradation of XRCC1 in an Epac-dependent pathway in lung cancer cells.

► cAMP signaling system inhibits repair of γ-ray-induced DNA damage. ► cAMP signaling system inhibits DNA damage repair by decreasing XRCC1 expression. ► cAMP signaling system decreases XRCC1 expression by promoting its proteasomal degradation. ► The promotion of XRCC1 degradation by cAMP signaling system is mediated by Epac1.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,