Article ID Journal Published Year Pages File Type
1931165 Biochemical and Biophysical Research Communications 2011 5 Pages PDF
Abstract

Cells lacking ataxia telangiectasia mutated (ATM) have impaired mitochondrial function. Furthermore, mammalian cells lacking ATM have increased levels of reactive oxygen species (ROS) as well as mitochondrial DNA (mtDNA) deletions in the region encoding for cytochrome c oxidase (COX). We hypothesized that ATM specifically influences COX activity in skeletal muscle. COX activity was ∼40% lower in tibialis anterior from ATM-deficient mice than for wild-type mice (P < 0.01, n = 9/group). However, there were no ATM-related differences in activity of succinate dehydrogenase, isocitrate dehydrogenase, alpha-ketoglutarate dehydrogenase, mitochondrial glycerol 3-phosphate dehydrogenase, or complex III. Incubation of wild-type extensor digitorum longus muscles for 1 h with the ATM inhibitor KU55933 caused a ∼50% reduction (P < 0.05, n = 5/group) in COX activity compared to muscles incubated with vehicle alone. Among the control muscles and muscles treated with the ATM inhibitor, COX activity was correlated (r = 0.61, P < 0.05) with activity of glucose 6-phosphate dehydrogenase, a key determinant of antioxidant defense through production of NADPH. Overall, the findings suggest that ATM has a protective role for COX activity.

► Skeletal muscle cytochrome c oxidase (COX) activity is decreased by ATM deficiency. ► There is not a general decrease in mitochondrial enzyme activity in ATM-deficient mice. ► Acute inhibition of ATM causes a decrease in COX activity. ► COX activity and glucose 6-phosphate dehydrogenase activity are correlated.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,