Article ID Journal Published Year Pages File Type
1932810 Biochemical and Biophysical Research Communications 2009 4 Pages PDF
Abstract

To identify DNA damage induced by space radiations such as the high linear energy transfer (LET) particles, phospho-H2AX (γH2AX) foci formation was analyzed in human cells frozen in an International Space Station freezer for 133 days. After recovering the frozen sample to the earth, the cells were cultured for 30 min, and then fixed. Here we show a track of γH2AX positive foci in them by immuno-cytochemical methods. It is suggested that space radiations, especially high LET particles, induced DSBs as a track. From the formation of the tracks in nuclei, exposure dose rate was calculated to be 0.7 mSv per day as relatively high-energy space radiations of Fe-ions (500 MeV/u, 200 keV/μm). From the physical dosimetry with CR-39 plastic nuclear track detectors and thermo-luminescent dosimeters, dose rate was 0.5 mSv per day. These values the exposed dose rate were similar between biological and physical dosimetries.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,