Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1933706 | Biochemical and Biophysical Research Communications | 2009 | 6 Pages |
PU.1 is one of key regulators of hematopoietic cell development, a tightly-regulated lineage-specific process. Here we provide the first evidence that PU.1 protein is cleaved into two fragments of 24 kDa and 16 kDa during apoptosis progression in leukemic cell lines and primary leukemic cells. Further experiments with specific capase-3 inhibitor Z-DEVD-fmk and the in vitro proteolytic system confirmed that PU.1 is a direct target of caspase-3. Using site-directed mutagenesis analyses, the aspartic acid residues at positions 97 and 151 of PU.1 protein were identified as capsase-3 target sites. More intriguingly, the suppression of PU.1 expression by small interfering RNAs (siRNAs) significantly inhibits DNA-damaging agents NSC606985 and etoposide-induced apoptosis in leukemic cells, together with the up-regulated expression of anti-apoptotic bcl-2 gene. These results would provide new insights for understanding the mechanism of PU.1 protein in hematopoiesis and leukemogenesis.