Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1934156 | Biochemical and Biophysical Research Communications | 2009 | 5 Pages |
Based on pseudo amino acid (PseAA) composition and a novel hybrid feature selection frame, this paper presents a computational system to predict the PPIs (protein–protein interactions) using 8796 protein pairs. These pairs are coded by PseAA composition, resulting in 114 features. A hybrid feature selection system, mRMR–KNNs–wrapper, is applied to obtain an optimized feature set by excluding poor-performed and/or redundant features, resulting in 103 remaining features. Using the optimized 103-feature subset, a prediction model is trained and tested in the k-nearest neighbors (KNNs) learning system. This prediction model achieves an overall accurate prediction rate of 76.18%, evaluated by 10-fold cross-validation test, which is 1.46% higher than using the initial 114 features and is 6.51% higher than the 20 features, coded by amino acid compositions. The PPIs predictor, developed for this research, is available for public use at http://chemdata.shu.edu.cn/ppi.