Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1934856 | Biochemical and Biophysical Research Communications | 2008 | 5 Pages |
The objective of this study was to investigate the influence of dynamic compressive loading on chondrogenesis of mesenchymal stem cells (MSCs) in the presence of TGF-β3. Isolated porcine MSCs were suspended in 2% agarose and subjected to intermittent dynamic compression (10% strain) for a period of 42 days in a dynamic compression bioreactor. After 42 days in culture, the free-swelling specimens exhibited more intense alcian blue staining for proteoglycans, while immunohistochemical analysis revealed increased collagen type II immunoreactivity. Glycosaminoglycan (GAG) content increased with time for both free-swelling and dynamically loaded constructs, and by day 42 it was significantly higher in both the core (2.5 ± 0.21%w/w vs. 0.94 ± 0.03%w/w) and annulus (1.09 ± 0.09%w/w vs. 0.59 ± 0.08%w/w) of free-swelling constructs compared to dynamically loaded constructs. This result suggests that further optimization is required in controlling the biomechanical and/or the biochemical environment if such stimuli are to have beneficial effects in generating functional cartilaginous tissue.