Article ID Journal Published Year Pages File Type
1934967 Biochemical and Biophysical Research Communications 2009 5 Pages PDF
Abstract
The acid phosphatase Api m 3 is the major allergen of the honeybee venom. Except for the amino acid sequence, no other structural information for the enzyme is available. We applied homology modeling to assign the three-dimensional structure of Api m 3. The structure of the homodimeric human prostatic acid phosphatase was used to model the Api m 3 tertiary structure. IgE epitopes and antigenic sites were predicted using programs based on the structure of known epitopes and analysis of the 3-D model. The model of Api m 3 revealed an active site similar to those of the histidine-type acid phosphatases with conservation of the catalytically important residues. The observed substitutions in the phosphate ion binding site suggest differences in the substrate specificity in comparison to other acid phosphatases. The analysis of the Api m 3 three-dimensional model revealed a very likely mechanism of enzyme action.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,