Article ID Journal Published Year Pages File Type
1935197 Biochemical and Biophysical Research Communications 2008 5 Pages PDF
Abstract

We report a method for site-specifically incorporating l-lysine derivatives into proteins in mammalian cells, based on the expression of the pyrrolysyl-tRNA synthetase (PylRS)-tRNAPyl pair from Methanosarcina mazei. Different types of external promoters were tested for the expression of tRNAPyl in Chinese hamster ovary cells. When tRNAPyl was expressed from a gene cluster under the control of the U6 promoter, the wild-type PylRS-tRNAPyl pair facilitated the most efficient incorporation of a pyrrolysine analog, Nε-tert-butyloxycarbonyl-l-lysine (Boc-lysine), into proteins at the amber position. This PylRS-tRNAPyl system yielded the Boc-lysine-containing protein in an amount accounting for 1% of the total protein in human embryonic kidney (HEK) 293 cells. We also created a PylRS variant specific to Nε-benzyloxycarbonyl-l-lysine, to incorporate this long, bulky, non-natural lysine derivative into proteins in HEK293. The recently reported variant specific to Nε-acetyllysine was also expressed, resulting in the genetic encoding of this naturally-occurring lysine modification in mammalian cells.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,