Article ID Journal Published Year Pages File Type
1935363 Biochemical and Biophysical Research Communications 2008 5 Pages PDF
Abstract

The Saccharomyces cerevisiae protein Hsl7 is a regulator of the Swe1 protein kinase in cell cycle checkpoint control. Hsl7 has been previously described as a type III protein arginine methyltransferase, catalyzing the formation of ω-monomethylarginine residues on non-physiological substrates. However, we show here that Hsl7 can also display type II activity, generating symmetric dimethylarginine residues on calf thymus histone H2A. Symmetric dimethylation is only observed when enzyme and the methyl-accepting substrate were incubated for extended times. We confirmed the Hsl7-dependent formation of symmetric dimethylarginine by amino acid analysis and thin layer chromatography with wild-type and mutant recombinant enzymes expressed from both bacteria and yeast. This result is significant because no type II activity has been previously demonstrated in S. cerevisiae. We also show that Hsl7 has little or no activity on GST-GAR, a commonly used substrate for protein arginine methyltransferases, and only minimal activity on myelin basic protein. This enzyme thus may only recognize only a small subset of potential substrate proteins in yeast, in contrast to the situation with Rmt1, the major type I methyltransferase.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,