Article ID Journal Published Year Pages File Type
1935806 Biochemical and Biophysical Research Communications 2008 6 Pages PDF
Abstract

The heme domain of neuronal PAS domain protein 2 (NPAS2), a transcription factor that regulates the mammalian circadian rhythm, has been suggested to act as a sensor for carbon monoxide. To characterize the role of the heme domain in this function, we investigated the effects of PASA domain mutants, in the context of full-length NPAS2, on the transcriptional activity of the mouse Period 1 gene in NIH3T3 cells. Mutation of the endogenous ligand for ferrous heme (H119A or H171A) resulted in remarkably reduced transcriptional activity. In gel-shift assays, H119A or H171A mutants of the isolated basic helix–loop–helix (bHLH)-PASA domain impaired heterodimer formation with BMAL1, resulting in loss of DNA binding to the canonical E-box (CACGTG). These results indicate that the transcriptional activities of the mutants correlated well with their DNA-binding activities, suggesting that local conformational changes near the axial ligands of the PASA domain are responsible for its regulation of transcription.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,