Article ID Journal Published Year Pages File Type
1935865 Biochemical and Biophysical Research Communications 2008 6 Pages PDF
Abstract

In the current study, we show evidence, in a fructose-fed hamster model of insulin resistance, that free fatty acid (FFA) can induce hepatic insulin resistance in part via PKC activation leading to increased production of atherogenic apoB100-containing lipoproteins. Interestingly, IκB-kinase β (IKKβ)-dependent NF-κB was activated in hepatocytes from the fructose-fed hamster as an indication for PKC activation. Treatment of hepatocytes with oleate for 16 h showed the activation of the PKC isoforms, PKCα/βII, in a dose dependent manner. Strikingly, the general PKC inhibitor, bisindolylmaleimide-I, Bis-I (5 μM) was found to ameliorate fructose-induced insulin resistance, restoring the phosphorylation status of PKB and suppressing apoB100 overproduction in ex vivo and in vivo. The data suggest that hepatic PKC activation, induced by increased circulating FFA may be an important factor in the development of insulin resistance and dyslipidemia seen in the fructose-fed hamster model.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,