Article ID Journal Published Year Pages File Type
1935944 Biochemical and Biophysical Research Communications 2008 6 Pages PDF
Abstract

Sulfur(S)-starvation was previously shown to induce the degradation of an acidic lipid in chloroplasts, sulfoquinovosyl diacylglycerol (SQDG), to yield a major internal S-source in a green alga, Chlamydomonas reinhardtii. We here found that the synthesis of phosphatidylglycerol (PG), the other acidic lipid in chloroplasts, is activated to elevate its content up to a level that just compensates for the loss of SQDG. Similar activation of PG synthesis was also observed in an SQDG-deficient mutant under S-replete conditions, which led us to propose that upregulation of PG synthesis under S-starved conditions occurs through direct sensing of SQDG-loss, but not of S-starvation. Moreover, thylakoid membranes isolated from S-starved cells were reduced in photosystem I activity on treatment with phospholipase A2 that specifically broke down PG, which suggested a critical role of PG that is increased under S-starved conditions in the maintenance of the photosystem I activity.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,