Article ID Journal Published Year Pages File Type
1935952 Biochemical and Biophysical Research Communications 2008 5 Pages PDF
Abstract

Chaperone function in water-miscible organic co-solvents is useful for biocatalytic applications requiring enzyme stability in semi-aqueous media and for understanding chaperone behavior in hydrophobic environments. Previously, we have shown that a recombinant single subunit thermosome (rTHS) from Methanocaldococcus jannaschii functions in multiple co-solvents to hydrolyze ATP, prevent protein aggregation, and refold enzymes following solvent denaturation. For the present study, a truncated analog to the thermosome in which 70 N-terminal amino acids are removed is used to identify important regions within the thermosome for its chaperoning functions in organic co-solvents. Data presented herein indicate that the N-terminal region of rTHS is essential for the chaperone to restore the native state of the enzyme citrate synthase, but it is not a critical region for either binding of unfolded proteins or ATP hydrolysis. This is the first demonstration that direct refolding by a Group II chaperonin requires the N-terminal region of the protein.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,