Article ID Journal Published Year Pages File Type
1936524 Biochemical and Biophysical Research Communications 2008 8 Pages PDF
Abstract

We aim to study the mechanisms underlying the neurotrophic effect of daidzein (Dz) in hippocampal neurons. Dz-enhanced axonal outgrowths manifested growth cone formation and increased immunostaining intensity of growth-associated protein 43 (GAP-43) in growth cones. Consistent with this, Dz increased GAP-43 phosphorylation and its membrane translocation without affecting total GAP-43 levels. In the presence of Dz, significant increase in the immunoreactivity for estrogen receptor (ER) β, but not ERα, was observed on the membrane of cell bodies and growing axons. Dz also induced the activation of protein kinase C α (PKCα), which was inhibited by the ICI182,780 pretreatment. Similarly, Dz-promoted axonal elongation was blocked by ICI182,780 and Gö6976. Moreover, Dz-stimulated activation of GAP-43 was specifically abolished by Gö6976, suggesting PKCα being the upstream effector of GAP-43. Taken together, our data suggest that Dz triggers an ERβ/PKCα/GAP-43 signaling cascade to promote axonal outgrowths in cultured hippocampal neurons.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,