Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1936535 | Biochemical and Biophysical Research Communications | 2008 | 7 Pages |
In the present study, we investigated the effect of osmolality on the paracellular ion conductance (Gp) composed of the Na+ conductance (GNa) and the Cl− conductance (GCl). An osmotic gradient generated by NaCl with relatively apical hypertonicity (NaCl-absorption-direction) induced a large increase in the GNa associated with a small increase in the GCl, whereas an osmotic gradient generated by NaCl with relatively basolateral hypertonicity (NaCl-secretion-direction) induced small increases in the GNa and the GCl. These increases in the Gp caused by NaCl-generated osmotic gradients were diminished by the application of sucrose canceling the NaCl-generated osmotic gradient. The osmotic gradient generated by basolateral application of sucrose without any NaCl gradients had little effects on the Gp. However, this basolateral application of sucrose produced a precondition drastically quickening the time course of the action of the NaCl-generated osmotic gradient on the Gp. Further, we found that application of the basolateral hypotonicity generated by reduction of NaCl concentration shifted the localization of claudin-1 to the apical from the basolateral side. These results indicate that the osmotic gradient regulates the paracellular ion conductive pathway of tight junctions via a mechanism dependent on the direction of NaCl gradients associated with a shift of claudin-1 localization to the apical side in renal A6 epithelial cells.