Article ID Journal Published Year Pages File Type
1936547 Biochemical and Biophysical Research Communications 2008 6 Pages PDF
Abstract

The most significant complication of testicular torsion is loss of the testis, which may lead to impaired fertility. Molecular mechanisms how spermatogenesis impairs owing to testicular torsion remain unknown. This investigation, by using mouse model of testicular torsion, was undertaken to gain insight into the cellular and molecular mechanism underlying torsion-induced germ cell loss. Male mice were subjected to 2 h ischemia-inducing torsion, and testes were examined at 24, 48, and 72 h after the repair of torsion (reperfusion). Ischemia–reperfusion (IR) of the testes resulted in germ cell, mostly in spermatogonia, apoptosis, which was revealed by the terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick end labeling (TUNEL) technique. At 24 h after torsion repair germ cell apoptosis reached peak, then decreased until 72 h repair. Western blots showed that apoptotic proteins (p53, Caspase-3 and -9) gradually were upregulated at 48 h reperfusion, however, anti-apoptotic proteins (Bcl-2 and BDNF) were downregulated in the relevant IR treatment. IR injury induced CHOP protein appearance with maximum expression at 24 h of reperfusion. Furthermore, the germ cell apoptosis triggered downregulation of ubiquitin carboxyl-terminal hydrolase-L1 (UCH-L1) at both mRNA and protein levels. To test further whether ubiquitination was involved in IR stress, both mono- and poly-ubiquitin levels in IR stress condition were examined, which showed that both mono- and poly-ubiquitin expression significantly impaired. These results provide evidences of UCH-L1/ubiquitination signaling to the testis IR injury in vivo.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , ,