Article ID Journal Published Year Pages File Type
1937341 Biochemical and Biophysical Research Communications 2007 6 Pages PDF
Abstract

Cartilage is an avascular tissue with only a limited potential to heal and chondrocytes in vitro have poor proliferative capacity. Recently, adipose-derived stromal cells (ASC) have demonstrated a great potential for application to tissue engineering due to their ability to differentiate into cartilage, bone, and fat. In this study, we have utilized a high density three-dimensional (3D) micromass model system of early chondrogenesis with ASC. The material properties of these micromasses showed a significant increase in dynamic and static elastic modulus during the early chondrogenic differentiation process. These data suggest that the 3D micromass culture system represents an in vitro model of early chondrogenesis with dynamic cell signaling interactions associated with the mechanical properties of chondrocyte differentiation.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,