Article ID Journal Published Year Pages File Type
1937864 Biochemical and Biophysical Research Communications 2007 6 Pages PDF
Abstract
Oxidized low density lipoprotein (oxLDL) contributes to the pathophysiology of atherosclerosis, partly by altering gene expression in vascular cells. Here, we show 221 genes differentially regulated by oxLDL in coronary artery smooth muscle cells (CASMC), using oligonucleotide microarrays. These genes were classified into 14 functional groups. A comparable gene expression pattern was detected in apoE−/− mice. OxLDL induced an oxidative stress response in CASMC, but not the unfolded protein response. OxLDL also caused CASMC death which was accompanied by increased expression of FasL, Bax, and p53 but was caspase-independent. This approach provides further insight into disease pathology and prognosis.
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,