Article ID Journal Published Year Pages File Type
1938505 Biochemical and Biophysical Research Communications 2006 8 Pages PDF
Abstract

Transduction with recombinant, replication-defective adenoviral (Ad) vectors encoding a transgene is an efficient method for gene transfer into human dendritic cells (DC). Several studies have demonstrated that epitopes of the human telomerase reverse transcriptase gene (hTERT) can produce CTLs specific for malignant tumors. In this study, we constructed an hTERT recombinant adenovirus (rAd-hTERT) using DNA recombination. We found that human dendritic cells transduced with rAd-hTERT could effectively induce hTERT-specific cytotoxic T lymphocytes (CTLs) in vitro against various tumor cell lines, which were hTERT-positive and HLA-A2 matched. We also found that these hTERT-specific CTLs could not lyse autologous lymphocytes with low telomerase activity. Further studies revealed that rAd-hTERT transduced DCs could increase secretion of IFN-γ by effector cells when they were co-cultured with hTERT-positive and HLA-A2 matched tumor cell lines. These data suggest that an hTERT vaccine can induce anti-tumor immunity against various tumor cells expressing hTERT in a HLA-A2-restricted fashion in vitro. The transduction of DCs with rAd-hTERT offers a great opportunity in cancer immunotherapy.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , ,