Article ID Journal Published Year Pages File Type
1938857 Biochemical and Biophysical Research Communications 2006 8 Pages PDF
Abstract

PRIMA-1 has emerged as a small molecule that restores the wild type function to mutant p53. To identify molecular targets that are involved in PRIMA-1-induced apoptosis, we used a proteomics approach with two-dimensional gel electrophoresis coupled with liquid chromatography–tandem mass spectrometry for protein identification. By comparing the proteome of the PRIMA-1-treated MDA-231 breast carcinoma cells with that of MCF-7 cells, we have identified seven proteins that upregulated only in MDA-231 cells as a result of PRIMA-1-induced apoptosis. The identified proteins are involved in anaerobic glycolysis and in mitochondrial intrinsic apoptosis. Treatment of MDA-231 cells with PRIMA-1 resulted in the release of mitochondrial cytochrome c as well as the activation of caspase-3, which are essential for the execution of apoptosis. We present evidence to suggest that PRIMA-1-induced apoptosis in breast cancer cells with mutated p53 function involved the expression of proteins required for the activation of mitochondrial intrinsic pathway that is glycolysis-relevant.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,