Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1939101 | Biochemical and Biophysical Research Communications | 2006 | 7 Pages |
PurposeIschemic heart disease carries an increased risk of malignant ventricular tachycardia (VT), fibrillation (VF), and sudden cardiac death. Protein kinase C (PKC) epsilon activation has been shown to improve the hemodynamics in hearts subjected to ischemia/reperfusion. However, very little is known about the role of epsilon PKC in reperfusion arrhythmias. Here we show that epsilon PKC activation is anti-arrhythmic and its inhibition is pro-arrhythmic.MethodLangendorff-perfused isolated hearts from εPKC agonist (εPKC activation), antagonist (εPKC inhibition) transgenic (TG), and wild-type control mice were subjected to 30 min stabilization period, 10 min global ischemia, and 30 min reperfusion. Action potentials (APs) and calcium transients (CaiT) were recorded simultaneously at 37 °C using optical mapping techniques. The incidence of VT and VF was assessed during reperfusion.ResultsNo VT/VF was seen in any group during the stabilization period in which hearts were perfused with Tyrode’s solution. Upon reperfusion, 3 out of the 16 (19%) wild-type mice developed VT but no VF. In εPKC antagonist group, in which εPKC activity was downregulated, 10 out of 13 (76.9%) TG mice developed VT, of which six (46.2%) degenerated into sustained VF upon reperfusion. Interestingly, in εPKC agonist mice, in which the activity of εPKC was upregulated, no VF was observed and only 1 out of 12 mice showed only transient VT during reperfusion. During ischemia and reperfusion, CaiT decay was exceedingly slower in the antagonist mice compared to the other two groups.ConclusionModerate in vivo activation of εPKC exerts beneficial antiarrhythmic effect vis-a-vis the lethal reperfusion arrhythmias. Abnormal CaiT decay may, in part, contribute to the high incidence of reperfusion arrhythmias in the antagonist mice. These findings have important implications for the development of PKC isozyme targeted therapeutics and subsequently for the treatment of ischemic heart diseases.