Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1939470 | Biochemical and Biophysical Research Communications | 2006 | 7 Pages |
Apurinic/apyrimidinic (AP) sites arise in DNA through the spontaneous loss of bases or through the release of damaged bases from DNA by DNA glycosylases. AP sites in DNA can be catalyzed by AP endonucleases such as exonuclease III and endonuclease IV, generating a 3′-hydroxyl group and a 5′-terminal sugar phosphate. Here, we have identified and characterized a novel endonuclease IV from a hyperthermophilic bacterium Thermus thermophilus designated as TthNfo. TthNfo efficiently removed AP site from double-stranded oligonucleotide substrate. No significant difference was observed in the rate of reaction of four bases opposite AP site with TthNfo. In addition, TthNfo possesses a 3′–5′ exonuclease activity similar to that of Escherichia coli exonuclease III. Surprisingly, we found that TthNfo also catalyzes the excision of uracil from DNA. In comparison with other endonuclease IV proteins, the removal of uracil residue was unique to TthNfo. Based on these observations and the absence of exonuclease III in T. thermophilus, we suggest that versatile enzyme activities of TthNfo play an important role in counteracting DNA base damage in vivo.