Article ID Journal Published Year Pages File Type
1941035 Biochemical and Biophysical Research Communications 2006 10 Pages PDF
Abstract

Recently, we reported that heat shock protein 105 (HSP105) DNA vaccination induced anti-tumor immunity. In this study, we set up a preclinical study to investigate the usefulness of dendritic cells (DCs) pulsed with mouse HSP105 as a whole protein for cancer immunotherapy in vivo. The recombinant HSP105 did not induce DC maturation, and the mice vaccinated with HSP105-pulsed BM-DCs were markedly prevented from the growth of subcutaneous tumors, accompanied with a massive infiltration of both CD4+ T cells and CD8+ T cells into the tumors. In depletion experiments, we proved that both CD4+ T cells and CD8+ T cells play a crucial role in anti-tumor immunity. Both CD4+ T cells and CD8+ T cells specific to HSP105 were induced by stimulation with HSP105-pulsed DCs. As a result, vaccination of mice with BM-DCs pulsed with HSP105 itself could elicit a stronger tumor rejection in comparison to DNA vaccination.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , ,