Article ID Journal Published Year Pages File Type
1944206 Biochimica et Biophysica Acta (BBA) - Biomembranes 2014 14 Pages PDF
Abstract

•Coiled coil structure of SP-BN was detected at acidic pH.•A residue with pK = 4.8 ± 0.06 triggers the coiled coil formation.•A peptide with the predicted coiled coil sequence oligomerizes at acidic pH.

Pulmonary surfactant protein SP-B is synthesized as a larger precursor, proSP-B. We report that a recombinant form of human SP-BN forms a coiled coil structure at acidic pH. The protonation of a residue with pK = 4.8 ± 0.06 is the responsible of conformational changes detected by circular dichroism and intrinsic fluorescence emission. Sedimentation velocity analysis showed protein oligomerisation at any pH condition, with an enrichment of the species compatible with a tetramer at acidic pH. Low 2,2,2,-trifluoroethanol concentration promoted β-sheet structures in SP-BN, which bind Thioflavin T, at acidic pH, whereas it promoted coiled coil structures at neutral pH. The amino acid stretch predicted to form β-sheet parallel association in SP-BN overlaps with the sequence predicted by several programs to form coiled coil structure. A synthetic peptide (60W-E85) designed from the sequence of the amino acid stretch of SP-BN predicted to form coiled coil structure showed random coil conformation at neutral pH but concentration-dependent helical structure at acidic pH. Sedimentation velocity analysis of the peptide indicated monomeric state at neutral pH (s20, w = 0.55 S; Mr ~ 3 kDa) and peptide association (s20, w = 1.735 S; Mr = ~ 14 kDa) at acidic pH, with sedimentation equilibrium fitting to a Monomer-Nmer-Mmer model with N = 6 and M = 4 (Mr = 14692 Da). We propose that protein oligomerisation through coiled-coil motifs could then be a general feature in the assembly of functional units in saposin-like proteins in general and in the organization of SP-B in a functional surfactant, in particular.

Graphical abstractFigure optionsDownload full-size imageDownload high-quality image (239 K)Download as PowerPoint slide

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,