Article ID Journal Published Year Pages File Type
1945283 Biochimica et Biophysica Acta (BBA) - Biomembranes 2008 8 Pages PDF
Abstract

Dynorphins, endogeneous opioid neuropeptides, function as ligands to the opioid kappa receptors and also induce non-opioid effects in neurons, probably related to direct membrane interactions. We have characterized the structure transitions of dynorphins (big dynorphin, dynorphin A and dynorphin B) induced by the detergent sodium dodecyl sulfate (SDS). In SDS titrations monitored by circular dichroism, we observed secondary structure conversions of the peptides from random coil to α-helix with a highly aggregated intermediate. As determined by Fourier transform infrared spectroscopy, this intermediate exhibited β-sheet structure for dynorphin B and big dynorphin. In contrast, aggregated dynorphin A was α-helical without considerable β-sheet content. Hydrophobicity analysis indicates that the YGGFLRR motif present in all dynorphins is prone to be inserted in the membrane. Comparing big dynorphin with dynorphin A and dynorphin B, we suggest that the potent neurotoxicity of big dynorphin could be related to the combination of amino acid sequences and secondary structure propensities of dynorphin A and dynorphin B, which may generate a synergistic effect for big dynorphin membrane perturbing properties. The induced aggregated α-helix of dynorphin A is also correlated with membrane perturbations, whereas the β-sheet of dynorphin B does not correlate with membrane perturbations.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,