Article ID Journal Published Year Pages File Type
1946658 Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2011 9 Pages PDF
Abstract

A relatively high degree of nuclear DNA (nDNA) methylation is a specific feature of plant genomes. Targets for cytosine DNA methylation in plant genomes are CG, CHG and CHH (H is A, T, C) sequences. More than 30% total m5C in plant DNA is located in non-CG sites. DNA methylation in plants is species-, tissue-, organelle- and age-specific; it is involved in the control of all genetic functions including transcription, replication, DNA repair, gene transposition and cell differentiation. DNA methylation is engaged in gene silencing and parental imprinting, it controls expression of transgenes and foreign DNA in cell. Plants have much more complicated and sophisticated system of the multicomponent genome methylations compared to animals; DNA methylation in plant mitochondria is performed in other fashion as compared to that in nuclei. The nDNA methylation is carried out by cytosine DNA methyltransferases of, at least, three families. In contrast to animals the plants with the major maintenance methyltransferase MET1 (similar to animal Dnmt1) inactivated do survive. One and the same plant gene may be methylated at both adenine and cytosine residues; specific plant adenine DNA methyltransferase was described. Thus, two different systems of the genome modification based on methylation of cytosines and adenines seem to coexist in higher plants. This article is part of a Special Issue entitled: Epigenetic control of cellular and developmental processes in plants.

Research highlights► Replicative cytosine DNA methylation in plants. ► DNA demethylation by excision of m5C residues. ► Biological significance of DNA methylation. ► Genome-wide cytosine methylation patterns or DNA methylomes. ► Adenine DNA methylation in plants.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,