Article ID Journal Published Year Pages File Type
1946922 Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms 2009 11 Pages PDF
Abstract

Mitochondrial-nuclear communication is taking on increased importance in models of oxygen sensing, oxidative stress, aging, and disease. The deletion of the mitochondrial genome (mtDNA) and, hence, the ability to respire, affects expression of several nuclear genes through at least two different mitochondrial-nuclear communication pathways. One of the pathways, retrograde regulation, is activated by a reduction in respiration, while another, intergenomic signaling, is unaffected by respiration but requires mtDNA. Using DNA microarrays, we identify here a set of nuclear genes in Saccharomyces cerevisiae that are targets of intergenomic signaling. These nuclear genes are down-regulated in rho° cells that lack mtDNA but not in nuclear pet mutant rho+cells that possess mtDNA but lack respiration. Many of these nuclear genes encode mitochondrial proteins, implying that intergenomic signaling functions in coordinating mitochondrial and nuclear gene expression. In addition, analyses of deletion and linker scanning mutations in the promoter of the COX6 gene, a nuclear gene affected by intergenomic signaling, suggest an involvement of Abf1p transcription factor in intergenomic signaling. Together, these findings indicate that intergenomic signaling is distinct from retrograde regulation both in the nuclear genes that it regulates and in the way in which it affects their expression.

Keywords
Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,