Article ID Journal Published Year Pages File Type
1947848 Biochimica et Biophysica Acta (BBA) - General Subjects 2011 8 Pages PDF
Abstract

BackgroundRetigeric acid B (RAB), a triterpene acid isolated from Lobaria kurokawae exerts antifungal effect. The present study was designed to elucidate the underlying mechanisms by which RAB regulates the proliferation and cell death of Candida albicans.MethodsWe measured the metabolic activity of C. albicans with WST1 Cell Proliferation and Cytotoxicity Assay Kit, analyzed the cell cycle by flow cytometry, visualized the ultrastructure by transmission electron microscopy (TEM) and investigated the apoptosis and necrosis induced by RAB using confocal microscopy. The reactive oxygen species (ROS) accumulation was determined by spectrophotometry, flow cytometry and fluorescent microscopy. The mtΔψ was detected using flow cytometry. And the levels of intracellular cAMP and ATP were measured with cAMP ELISA and ATP Assay Kits, respectively.ResultsThe proliferation of the yeasts was blocked in G2/M phase by a low dose of RAB treatment and in G1 phase at high concentration. When cultured in phosphate buffered saline (PBS) deprived of energy source, yeasts displayed the phenotype of death caused by accumulated ROS, mtΔψ hyperpolarization and dramatic decrease in ATP level in the presence of high dose of RAB.General SignificanceRAB inhibits the growth of C. albicans by stimulating ROS production and reducing intracellular cAMP. The ROS accumulation, mtΔψ hyperpolarization, ATP depletion and damaged plasma membrane integrity together mediate cell death of C. albicans induced by RAB. Our findings provide a novel molecular mechanism for exploring possible applications of lichen derived metabolites in fighting fungal infection in humans.

Research Highlights►Retigeric acid B (RAB), a triterpene acid isolated from the lichen species Lobaria kurokawae inhibits the growth of Candida albicans by stimulating ROS production and reducing intracellular cAMP. The ROS accumulation, mtΔψ hyperpolarization, ATP depletion and damaged plasma membrane integrity together mediate cell death of C. albicans induced by RAB.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,