Article ID Journal Published Year Pages File Type
1948090 Biochimica et Biophysica Acta (BBA) - General Subjects 2009 12 Pages PDF
Abstract

BackgroundWe have shown that protein kinase Cδ (PKCδ) inhibition results in increased endothelial cell (EC) permeability and decreased RhoA activity; which correlated with diminished stress fibers (SF) and focal adhesions (FA). We have also shown co-precipitation of p190RhoGAP (p190) with PKCδ. Here, we investigated if PKCδ regulates p190 and whether PKCδ-mediated changes in SF and FA or permeability were dependent upon p190.MethodsProtein–protein interaction and activity analyses were performed using co-precipitation assays. Analysis of p190 phosphorylation was performed using in vitro kinase assays. SF and FA were analyzed by immunofluorescence analyses. EC monolayer permeability was measured using electrical cell impedance sensor (ECIS) technique.ResultsInhibition of PKCδ increased p190 activity, while PKCδ overexpression diminished p190 activity. PKCδ bound to and phosphorylated both p190FF and p190GTPase domains. p190 protein overexpression diminished SF and FA formation and RhoA activity. Disruption of SF and FA or increased permeability induced upon PKCδ inhibition, were not attenuated in EC in which the p190 isoforms were suppressed individually or concurrently.General significanceOur findings suggest that while PKCδ can regulate p190 activity, possibly at the FF and/or GTPase domains, the effect of PKCδ inhibition on SF and FA and barrier dysfunction occurs through a pathway independent of p190.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, ,