Article ID Journal Published Year Pages File Type
1948210 Biochimica et Biophysica Acta (BBA) - General Subjects 2009 9 Pages PDF
Abstract

BackgroundATP exerts diverse effects on various cell types via specific purinergic P2Y receptors. Intracellular signaling cascades are the main routes of communication between P2Y receptors and regulatory targets in the cell.Methods and resultsWe examined the role of ATP in the modulation of ERK1/2, JNK1/2, and p38 MAP kinases (MAPKs) in human colon cancer Caco-2 cells. Immunoblot analysis showed that ATP induces the phosphorylation of MAPKs in a time- and dose-dependent manner, peaking at 5 min at 10 µM ATP. Moreover, ATPγS, UTP, and UDP but not ADP or ADPβS increased phosphorylation of MAPKs, indicating the involvement of, at least, P2Y2/P2Y4 and P2Y6 receptor subtypes. RT–PCR studies and PCR product sequencing supported the expression of P2Y2 and P2Y4 receptors in this cell line. Spectrofluorimetric measurements showed that cell stimulation with ATP induced transient elevations in intracellular calcium concentration. In addition, ATP-induced phosphorylation of MAPKs in Caco-2 cells was dependent on Src family tyrosine kinases, calcium influx, and intracellular Ca2+ release and was partially dependent on the cAMP/PKA and PKC pathways and the EGFR.General significanceThese findings provide new molecular basis for further understanding the mechanisms involved in ATP functions, as a signal transducer and activator of MAP kinase cascades, in colon adenocarcinoma Caco-2 cells.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,