Article ID Journal Published Year Pages File Type
1948552 Biochimica et Biophysica Acta (BBA) - General Subjects 2007 8 Pages PDF
Abstract

Curcumin, an anti-inflammatory and antioxidant compound, was evaluated for its ability to suppress acute carbon tetrachloride-induced liver damage. Acute hepatotoxicity was induced by oral administration of CCl4 (4 g/kg, p.o.). Curcumin treatment (200 mg/kg, p.o.) was given before and 2 h after CCl4 administration. Indicators of necrosis (alanine aminotransferase) and cholestasis (γ-glutamyl transpeptidase and bilirubins) resulted in significant increases after CCl4 intoxication, but these effects were prevented by curcumin treatment. As an indicator of oxidative stress, GSH was oxidized and the GSH/GSSG ratio decreased significantly by CCl4, but was preserved within normal values by curcumin. In addition to its antioxidants properties, curcumin is capable of preventing NF-κB activation and therefore to prevent the secretion of proinflammatory cytokines. Therefore, in this study we determined the concentrations of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and interleukin-6 (IL-6) mRNA, and NF-κB activation. CCl4-administered rats depicted significant increases in TNF-α, IL-1β, and IL-6 production, while curcumin remarkably suppressed these mediators of inflammation in liver damage. These results were confirmed by measuring TNF-α, and IL-1β protein production using Western Blot analysis. Accordingly, these proteins were increased by CCl4 and this effect was abolished by curcumin. Administration of CCl4 induced the translocation of NF-κB to the nucleus; CCl4 induced NF-κB DNA binding activity was blocked by curcumin treatment. These findings suggest that curcumin prevents acute liver damage by at least two mechanisms: acting as an antioxidant and by inhibiting NF-κB activation and thus production of proinflammatory cytokines.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , ,