Article ID Journal Published Year Pages File Type
1949088 Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2015 9 Pages PDF
Abstract

•SR-B1P297S carriers show increased LDL apoE/free apoE compared to family controls.•SR-B1P297S carriers show increased apoL-1 in HDL compared to family controls.•Carriers had equivalent HDL anti-oxidative function and PON1 activities as controls.•Carriers had significantly increased methionine oxidations in HDL-apoA-I.•Carriers HDL had similar cholesterol efflux capacity as controls.

The scavenger receptor class B type 1 (SR-B1) is an important HDL receptor involved in cholesterol uptake and efflux, but its physiological role in human lipoprotein metabolism is not fully understood. Heterozygous carriers of the SR-B1P297S mutation are characterized by increased HDL cholesterol levels, impaired cholesterol efflux from macrophages and attenuated adrenal function. Here, the composition and function of lipoproteins were studied in SR-B1P297S heterozygotes.Lipoproteins from six SR-B1P297S carriers and six family controls were investigated. HDL and LDL/VLDL were isolated by ultracentrifugation and proteins were separated by two-dimensional gel electrophoresis and identified by mass spectrometry. HDL antioxidant properties, paraoxonase 1 activities, apoA-I methionine oxidations and HDL cholesterol efflux capacity were assessed.Multivariate modeling separated carriers from controls based on lipoprotein composition. Protein analyses showed a significant enrichment of apoE in LDL/VLDL and of apoL-1 in HDL from heterozygotes compared to controls. The relative distribution of plasma apoE was increased in LDL and in lipid-free form. There were no significant differences in paraoxonase 1 activities, HDL antioxidant properties or HDL cholesterol efflux capacity but heterozygotes showed a significant increase of oxidized methionines in apoA-I.The SR-B1P297S mutation affects both HDL and LDL/VLDL protein compositions. The increase of apoE in carriers suggests a compensatory mechanism for attenuated SR-B1 mediated cholesterol uptake by HDL. Increased methionine oxidation may affect HDL function by reducing apoA-I binding to its targets. The results illustrate the complexity of lipoprotein metabolism that has to be taken into account in future therapeutic strategies aiming at targeting SR-B1.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , , , , , , , , , ,