Article ID Journal Published Year Pages File Type
1949777 Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2009 8 Pages PDF
Abstract

The β-oxidation of oleic acid in Saccharomyces cerevisiae (S. cerevisiae) was studied by comparing the growth of wild-type cells on oleic acid or palmitic acid with the growth of mutants that either had a deletion in the YOR180c (DCI1) gene reported to encode Δ3,5,Δ2,4-dienoyl-CoA isomerase (dienoyl-CoA isomerase) or in the PTE1 gene encoding peroxisomal thioesterase 1. Growth of wild-type cells was indistinguishable from that of YOR180c mutant cells on either palmitic acid or oleic acid, whereas the PTE1 mutant grew slower and to a lower density on oleic acid but not on palmitic acid. The identification of 3,5-tetradecadienoic acid in the medium of wild-type cells but not in the medium of the PTE1 mutant proves the operation of the thioesterase-dependent pathway of oleate β-oxidation in S. cerevisiae. Dienoyl-CoA isomerase activity was very low in wild-type cells, fourfold higher in the YOR180c mutant, and not associated with purified Yor180c protein. These observations support the conclusion that the YOR180c gene does not encode dienoyl-CoA isomerase.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , , ,