Article ID Journal Published Year Pages File Type
1949865 Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2009 9 Pages PDF
Abstract

All-trans retinoic acid (RA) levels are controlled by enzymes of the vitamin A metabolism (RDH16, RalDH2, and LRAT) and RA catabolism (CYP26 and CYP2S1). Here, the mRNA expression of these enzymes was investigated in human keratinocytes at different Ca2+concentrations and after exposure to RA and CYP26 inhibitors. Cellular differentiation (high Ca2+) increased the expression of LRAT, RDH16 and RalDH2, and decreased CYP26B1. RA (1 μM) induced CYP26A1, CYP26B1, CYP2S1, CRABPII and LRAT mRNA. The CYP26 inhibitor talarozole altered CYP26A1 and LRAT mRNA expression in a similar way as RA, increased the cellular accumulation of [3H]RA, and induced a punctate CRABPII staining, also observed after siRNA knock-down of CYP26B1 (but not after RA exposure). Furthermore, CYP26B1 siRNA increased the accumulation of [3H]RA and the CRABPII mRNA, suggesting an augmented retinoid signalling. Thus CYP26B1 appears essential for RA catabolism under physiological conditions, whereas CYP26A1 might play a greater role during RA excess.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , , ,