Article ID Journal Published Year Pages File Type
1950017 Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids 2008 8 Pages PDF
Abstract

Intestinal FABP (IFABP) and liver FABP (LFABP), homologous proteins expressed at high levels in intestinal absorptive cells, employ markedly different mechanisms of fatty acid transfer to acceptor model membranes. Transfer from IFABP occurs during protein–membrane collisional interactions, while for LFABP transfer occurs by diffusion through the aqueous phase. In addition, transfer from IFABP is markedly faster than from LFABP. The overall goal of this study was to further explore the structural differences between IFABP and LFABP which underlie their large functional differences in ligand transport. In particular, we addressed the role of the αI-helix domain in the unique transport properties of intestinal FABP. A chimeric protein was engineered with the ‘body’ (ligand binding domain) of IFABP and the αI-helix of LFABP (α(I)LβIFABP), and the fatty acid transfer properties of the chimeric FABP were examined using a fluorescence resonance energy transfer assay. The results showed a significant decrease in the absolute rate of FA transfer from α(I)LβIFABP compared to IFABP. The results indicate that the αI-helix is crucial for IFABP collisional FA transfer, and further indicate the participation of the αII-helix in the formation of a protein–membrane “collisional complex”. Photo-crosslinking experiments with a photoactivable reagent demonstrated the direct interaction of IFABP with membranes and further support the importance of the αI helix of IFABP in its physical interaction with membranes.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry
Authors
, , ,